Mark scheme – SI Units

Qı	Questio n		Answer/Indicative content	Mark s	Guidance
1			В	1	Examiner's Comments This was an easy starting question for all the candidates. It was testing knowledge of S.I. units used in a range of topics. The majority of the candidates got the correct answer B. The most popular distractor was D, followed closely by A.
			Total	1	
2			Α	1	
			Total	1	
3			Α	1	
			Total	1	
4			с	1	Examiner's Comments About three quarters of all candidates recognised that the volt is not an S.I. base unit.
			Total	1	
5			В	1	
			Total	1	
6			В	1	
			Total	1	
7			А	1	
			Total	1	
8			В	1	
			Total	1	
9			D	1	
			Total	1	
1 0			A	1	
			Total	1	
1 1			D	1	
			Total	1	

1 2			В	1	
			Total	1	
1 3			В	1	
			Total	1	
1 4			$\sqrt{\frac{T}{\mu}} \rightarrow \sqrt{\frac{\text{kg m s}^{-2}}{\text{kgm}^{-1}}}$ clearly leading to m s ⁻¹ Homogeneous because <i>v</i> and $(T/\mu)^{1/2}$ have same units	M1 A0	Examiner's Comments The proof for the homogeneity required careful progression and no omission of any key step. About half of the candidates showed sufficient rigour to score the mark. Those who lost the mark, invariably did so because of the poor manipulation of m divided by m ⁻¹ .
			Total	1	
1 5	а		Any <u>one</u> from: current, temperature, light intensity and amount of substance / matter	B1	Not: ampere, kelvin, candela and mole Not correct quantity with its unit, e.g. current in A or current (A) Examiner's Comment Most candidates could not state an unambiguous base quantity. There was no credit for a correctly named quantity accompanied by its S.I. unit, e.g. <i>'current in ampere'</i> . Some answers were just wrong; these include <i>force, charge, energy</i> and <i>kelvin</i> .
	b	i	$R = \frac{\rho L}{A} \text{and} A = \pi \left(\frac{d}{2}\right)^2$ $R_{\chi} = \frac{4\rho L}{\pi d^2} \text{and} R_{\chi} = \frac{8\rho L}{\pi d^2}$ Clear steps leading to $R = \frac{12\rho L}{\pi d^2}$	M1 A1	Examiner's Comment Most candidates were familiar with the equations $R = \rho L / A$ and $A = \pi d^2/4$. The modal score here was two marks. Most scripts had well-structured answers and demonstrated excellent algebraic skills. A variety of techniques were employed to determine the total resistance of the two resistors in series.
		ii	1 Ruler / tape measure (for <i>L</i>) and micrometer (for <i>d</i>) 2 $R = 2.3(4) (\Omega)$	B1 C1 C1	Allow (vernier / digital) calipers or travelling microscope for micrometer Allow other correct methods for getting $2.3 \pm 0.1 (\Omega)$ Allow 2 or more sf for this C1 mark

2.1 SI Units

	$\frac{0.1}{9.5}$ or $2 \times \frac{0.003}{0.270}$	C1	Note 0.0105 or 1.05% or 0.0222 or 2.22% scores this mark, allow 2sf or more
	$\frac{0.1}{9.5} + 2 \times \frac{0.003}{0.270} \text{or} 0.0327 \text{or} 3.27\%$		
	absolute uncertainty in $R = 0.0327 \times 2.34 = 0.077$		
	$R = 2.3 \pm 0.1 (\Omega)$ (The actual) <i>R</i> is large(r) because (the actual) <i>d</i> is small(er) or (the actual) <i>A</i> is small(er) or $R \propto 1/d^2$	A1 B1	Allow: 2.34 \pm 0.08 (Ω) Note use of R_x or R_y instead of R can score the second and third C1 marks only Allow: The calculated R is small(er) because (the measured) A is large(r) or $R \propto 1/d^2$ Examiner's Comment Almost all candidates correctly identified the measuring instrument for L and d . Some answers were spoilt by mentioning both a ruler and a micrometer for measuring the length of the wire. This question produced a range of marks and discriminated well. According to the data shown in the table on page 13, the final value for the resistance R had to be given to 2 significant figures (SF), but an answer to 3 SF was also allowed. Top-end candidates produced flawless answers and quoted R as either 2.3 \pm 0.1 Ω or 2.34 \pm 0.08 Ω . Some candidates successfully calculated the maximum and the minimum values for R and then the absolute uncertainty from half the range. The most common mistakes being made were: • Omitting the factor of 2 when determining the percentage uncertainty in d^2 . • Calculating the resistance of either resistor X or resistor Y. • Inconsistency between R and its absolute uncertainty, e.g. $R = 2.3 \pm 0.077 \Omega$.
			Some candidates realised that the actual value of <i>R</i> would be <i>'larger because d was smaller or R</i> \propto 1/ <i>d</i> ² . On most scripts, it was difficult to follow if the resistance was the actual one or the calculated one.
	Total	9	
1 6	С	1	
	Total	1	
1 7	power or P: kg m² s⁻³	B1	power = force × distance / time = force × velocity
	Total	1	
1 8	A	1	
	Total	1	

1 9	D	1	Examiner's Comments The correct response is D . It was encouraging to see that a large number of candidates were able to select the correct answer. Although a relatively straightforward calculation, it does involve two unit conversions (mA to A, and hours to seconds), which if not done would generate one of the distractors. Many candidates showed their working here as they would in a structured question and this is always helpful when the calculation involves more than one stage.
	Total	1	
2 0	Α	1	
	Total	1	
2 1	A	1	
	Total	1	
2 2	D	1	
	Total	1	
2 3	В	1	
	Total	1	
2 4	Total C	1	Examiner's Comments Since P = F/A, we need the units of force and area in base units. F = ma, so force has the base units of kg m s ⁻² . Area's unit in base units is m ² . Hence pressure has the base units kg m s ⁻¹ /m ² = kg m ⁻¹ s ⁻² , which is answer C.
2 4	Total C Total	1 1	Examiner's Comments Since P = F/A, we need the units of force and area in base units. F = ma, so force has the base units of kg m s ⁻² . Area's unit in base units is m ² . Hence pressure has the base units kg m s ⁻¹ /m ² = kg m ⁻¹ s ⁻² , which is answer C.
2 4 2 5	Total C Total A	1 1 1 1	Examiner's Comments Since P = F/A, we need the units of force and area in base units. F = ma, so force has the base units of kg m s ⁻² . Area's unit in base units is m ² . Hence pressure has the base units kg m s ⁻¹ /m ² = kg m ⁻¹ s ⁻² , which is answer C.
2 4 2 5	Total C Total A Total	1 1 1 1 1	Examiner's Comments Since P = F/A, we need the units of force and area in base units. F = ma, so force has the base units of kg m s ⁻² . Area's unit in base units is m ² . Hence pressure has the base units kg m s ⁻¹ /m ² = kg m ⁻¹ s ⁻² , which is answer C.
2 4 2 5 2 6	Total C Total A Total A A	1 1 1 1 1 1	Examiner's Comments Since P = F/A, we need the units of force and area in base units. F = ma, so force has the base units of kg m s ⁻² . Area's unit in base units is m ² . Hence pressure has the base units kg m s ⁻¹ /m ² = kg m ⁻¹ s ⁻² , which is answer C.
2 4 2 5 2 6	Total C Total A Total A Total A Total Total	1 1 1 1 1 1 1 1	Examiner's Comments Since P = F/A, we need the units of force and area in base units. F = ma, so force has the base units of kg m s ⁻² . Area's unit in base units is m ² . Hence pressure has the base units kg m s ⁻¹ /m ² = kg m ⁻¹ s ⁻² , which is answer C.
2 4 2 5 2 6 2 7	Total C Total A Total A Total C C C C C C C C C C C C C C C	1 1 1 1 1 1 1 1	Examiner's Comments Since P = F/A, we need the units of force and area in base units. F = ma, so force has the base units of kg m s ⁻² . Area's unit in base units is m ² . Hence pressure has the base units kg m s ⁻¹ /m ² = kg m ⁻¹ s ⁻² , which is answer C.
2 4 2 5 2 6 2 7	TotalCTotalATotalATotalCTotalTotalTotalTotal	1 1 1 1 1 1 1 1 1 1	Examiner's Comments Since P = F/A, we need the units of force and area in base units. F = ma, so force has the base units of kg m s ⁻² . Area's unit in base units is m ² . Hence pressure has the base units kg m s ⁻¹ /m ² = kg m ⁻¹ s ⁻² , which is answer C.

2.1 01 01110	2.1	SI	Units
--------------	-----	----	-------

				Examiner's Comments The majority of the candidates effortlessly showed the base units for resistivity to be kg m ³ s ⁻³ A ⁻² . The structure from most was immaculate. It was good to see shortcuts being used too. Some candidates went straight to the units for resistivity (Ω m), and then multiplied the units given for resistance multiplied by m. Image: Colspan="2">Misconception Misconception The most common misconception, mainly at the lower end, was that the A in the resistance equation was the unit for current, the ampere A. This led to the incorrect answer kg ms ⁻³ A ⁻¹
		Total	2	
2 9	а	F / N e / cm 0 0.0 0.49 1.0 0.98 1.8 1.47 2.8 1.96 3.6 2.45 4.6	B1	Note Column heading required and values in table. Allow 0 for 0.0 Not 1 for 1.0 Examiner's Comments A surprisingly number of candidates either did not include the heading in the table or wrote "0.9" or "1" to one significant figure rather than "1.0".
	b	 y-axis labelled correctly e / cm y-axis scale is simple and uses at least half the graph paper Data points plotted correctly. Straight line of best fit drawn with a straight edge / ruler 	B1 B1 B1	 Allow extension / cm or e (cm) for e / cm Note axis tick labels must be at least every two large squares (4 cm) Check two data points (0.98, 1.8) and (2.45, 4.6) Thickness of each point must be less than half a small square Not freehand / wobbly line Examiner's Comments The graph was drawn well with most candidates labelling the axis and using a simple scale which covered more than half the y-axis. Occasionally candidates lost a mark because of a miss-plot.
	с	Gradient in the range 1.80 to 1.94 OR 0.0180 to 0.0194	B1	Allow 1.8 or 1.9 OR 0.018 or 0.019 Not 2 OR 0.02 Ignore POT errors Ignore significant figures Examiner's Comments This question was well answered. It was pleasing to see that the majority of the candidates clearly indicated the points on their line used to determine the gradient.

	d	$k_2 = \frac{1}{\text{gradient}} = \frac{1}{(c)}$ Correct value for k_2 and correct unit N cm ⁻¹ or N m ⁻¹ and given to 2 or 3 significant figures	C1 A1	 Note expect about 0.55 (N cm⁻¹) or 55 (N m⁻¹) Note unit must be with correct power of ten Examiner's Comments In this question candidates were required to use the gradient value to determine a value for the spring constant. Many candidates did not realise that the spring constant was the inverse of the gradient value. A common error was determining <i>k</i> and then dividing it by two. This question also required candidates to include a suitable unit and give the answer to an appropriate number of significant figures. Some candidates made a power of ten error by not converting centimetres to metres; other candidates either gave the answer to one significant figure or four or five significant figures.
	e	Hooke's law: Extension is (directly) proportional to the load (provided elastic limit not exceeded) Graph is not a <u>straight</u> line <u>passing</u> <u>through the origin</u> so Hooke's law is not obeyed OR Graph is a <u>straight</u> line <u>passing through</u> <u>the origin</u> so Hooke's law is obeyed	B1 B1	Examiner's Comments A good number of candidates quoted Hooke's law; candidates should be encouraged to define any symbols used. Many candidates stated that to prove a directly proportional relationship a straight line should be produced but omitted to state that the straight line should pass through the origin.
	f	$k_1 = 2 \times (\mathbf{d})$ or springs in series $= k / n$ $\frac{2}{3}$	C1 A1	Allow $F = k_1 e = k_2 2e = k_3 3e$ Note 2:3 scores one mark Allow 0.66, 0.67 Examiner's Comments Candidates found this part difficult; it was often omitted and where candidates did attempt it they ended up with the inverse ratio of 1.5.
		Total	12	
3 0		$h \rightarrow J s / \frac{h \rightarrow N m}{s} / J \rightarrow kg m^2 s^{-2}$ base unit = kg m ² s ⁻¹	C1 A1	
		Total	2	
3		$1.2 \times 10^6 = \frac{1}{2} \times (\text{mass per second}) \times 8.0^2$ mass per s = 3.8×10^4 (kg s ⁻¹)	C1 A1	Answer is 3.75×10^4 (kg s ⁻¹) to 3sf Note: 3.8 × 10n (kg s ⁻¹) scores 1 for PoT error. <u>Examiner's Comments</u>

			A large majority of candidates got this right. Those that did not usually forgot to square the velocity.
	Total	2	
3 2	D	1	
	Total	2	
3 3	$(R = \frac{V}{I} = \frac{W}{QI}; Q = It)$ charge \rightarrow A s or energy \rightarrow kg m s ⁻² × m or kg m ² s ⁻² (base units) kg m ² A ⁻² s ⁻³	C1 A1	Allow other correct methods Allow Q or C or coulomb for 'charge'; E or W or joule or J or work done for 'energy' Allow 1 mark for J s ⁻¹ A ⁻² Allow $\frac{\log m^2}{A^2 s^2}$ or kg m ² /(A ² s ³) Not kg m ² / A ² / s ³ or kg m ² / s ³ / A ² Examiner's Comments This was a challenging question, which provided the ideal opportunity for top-end candidates to use a variety of methods to get the correct S.I. base units of kg m ² A ⁻² s ⁻³ for resistance. A significant number of candidates secured 1 mark for a partial answer with either charge \rightarrow A s, or energy \rightarrow kg m ² s ⁻² . The rules for exponents were a bit perplexing for the low-scoring candidates. Many also misunderstood S.I. units. Exemplar 4 Derive the SL base units for resistance. $\sqrt{=1} (\frac{1}{L} \sum \sqrt{-\frac{1}{Q}} = \frac{1}{\frac{1}{D} \frac{d}{L}} = \frac{1}{\frac{1}{A} \frac{d}{S}} = \frac{1}{\frac{1}{A} \frac{d}{S$

					Exemplar 5 $P = \frac{M}{V} \qquad R = \frac{\rho L}{A} = -\frac{hgm^{-2}}{M} \frac{(M)L}{A}$ $R = \frac{hgm^{-3}m}{M^2} = hgm^{-5}m = hgm$ base units:
			Total	2	
3 4	a		$\varepsilon = 7.2 \times 10^{-12} \times 1.2 \times 10^{-3}/4.0 \times 10^{-4}$ permittivity = 2.2 × 10 ⁻¹¹ (F m ⁻¹)	C1 A1	Allow any subject Allow ε_0 instead of ε Note answer to 3 sf is 2.16 × 10 ⁻¹¹ (F m ⁻¹) Allow 1 mark for bald 2.4; relative permittivity calculated Examiner's Comment Most candidates effortlessly used the equation $C = \varepsilon A / d$ to determine the permittivity <i>s</i> of the insulator between the capacitor plates. Once again, most answers were well-structured and showed good calculator skills. The most common errors were: • Taking the prefix pico (p) to be a factor of 10 ⁻⁹ . • Confusing permittivity ε and permittivity of free space ε_0 . • Calculating relative permittivity (2.4).
	b	i	capacitance of two capacitors in series = $500 (\pi F)$ C = 1000 + 500 $C = 1500 (\mu F)$	C1 A1	Examiner's Comment The modal score here was two marks, with most scripts showing excellent understanding of capacitors in combination. Many

					candidates arrived at the final answer of 1500 μ F without much calculation. A small number incorrect swapped the equations for series and parallel combinations and arrived at the incorrect answer of 670 μ F.
		ii	V = 1.5 × e ^{-12/15} V = 0.67 (V)	C1 A1	Possible ecf from (i) Allow 1 mark for 0.83 V, $V = 1.5[1 - e^{-12/15}]$ used Examiner's Comment Many candidates correctly calculated the time constant of the circuit and then either determined the p.d. across the capacitors (0.83 V) or the resistor (0.67 V) - the latter being the correct answer. The most common mistake was calculating e ⁻¹²¹¹⁵ rather than 1.5 × e ^{-12/15} . Weaker candidates got nowhere by attempting to use $V = IR$ and $Q = VC$.
			Total	6	
3 5	а		work done = 400 × 0.80 work done = 320 (J)	C1 A1	Examiner's Comments This was answered correctly by most candidates; a tiny number did not convert from cm to m correctly.
	b		ratio of speeds = ratio of distances (since same time) or ratio = 80 / 2 ratio = 40	C1 A1	Allow 40:1 Allow 2 marks for ratio 29.4 (assuming p same) Not 1:40 for A1 Examiner's Comments Unsuccessful candidates tried to employ 'suvat' equations, although many candidates realised that the required ratio was also the ratio of the distances travelled in the same time period. Some credit was given for those candidates that assumed constant pressure and 100% efficiency.
	с		work done = 1200 × 9.81 × 0.02 (= 235.4) efficiency = 235.4 / 320 × 100 efficiency = 74 %	C1 A1	Note: Using $g = 10 \text{ N kg}^{-1}$ gives 75%: allow 1 mark max Possible ECF from (a) Note: 0.74 scores 1 mark Allow 2 marks for using 235/320 × 100 = 73% Allow use of 9.8 N kg ⁻¹ gives 73.5% for 2 marks Allow 1 mark for 71%, force = (1200 g – 400) N used Allow 1 mark for 76%, force = (1200 g + 400) N used Examiner's Comments The majority of candidates successfully calculated the work done on the car and hence the efficiency of the system.
			Total	6	
3 6			(Mass of adult =) 50 kg to 150 kg or W = 500N to 1500 N	B1 C1	Allow use of 10 for <i>g</i> (since estimate) Allow ECF for incorrect weight

	Area = weight		Ignore POT
	2.3×10^{n} Area = $\frac{1}{3} \times \frac{\text{weight}}{2.3 \times 10^{6}}$ = value for area (m ²)	A1	Allow one significant figure
			Examiner's Comments
			A good proportion of the candidates scored full marks on this question. Some candidates found the total area rather than the area of one leg. A few candidates assumed that the stool had four legs.
			This question required candidates to estimate the mass or weight of an adult. In general, in this type of question a more generous mass is sensible.
			Candidates who did well on this question started by stating the mass (or weight) of an adult. Examiners allowed a mass between 50 kg and 150 kg. Candidates then often worked out the total area before working out the area of one of the legs. Some candidates did not correctly understand that 2.3 MPa was equal to 2.3×10^6 Pa. Some candidates incorrectly divided the stress by three.
			Exemplar 4
			Estimate the minimum cross-sectional area Λ of one leg. $CLVGQE$ $CAULT MCSC-GG,$ $SUTC SS = FORCE$ weight $560 \times cq.81 = 5186.C$ $2.3 \times 10^{6} = \frac{600}{A}$ 2.5×10^{-6} 7.6×10^{-6} 10^{-6} 7.6×10^{-6} 10^{-6}
			This candidate has clearly identified the average weight of an adult and then indicated how the weight of the adult is determined.
			The candidate has then clearly stated the equation for stress and shown their working for full marks.
			AfL
			Candidates should be encouraged to practise making estimates of physical quantities.
	Total	3	
	$x = \frac{TL}{EA}$	C1	Note x must be the subject
3 7	$x = \frac{460 \times 1.73}{210 \times 10^9 \times 11 \times 10^{-6}}$ $x = 3.45 \times 10^{-4} \text{ (m)}$	C1	Allow alternative methods e.g. determines stress (4.18 × 10 ⁷ Pa) C1 determines strain (1.99 × 10 ⁻⁴) C1 determines <i>x</i>

Г

٦

		A1	Allow 3.4, 3.5, 3.43, 3.44 Allow 2 marks for 3.45×10^{n} Examiner's Comments This question required candidates to carry out several calculations. Good candidates would start by combining the definitions of stress and strain with the definition of Young modulus to give $x = \frac{TL}{EA}$ A significant number of candidates made a power of ten (POT) error either with 210 GPa or with the area of 11.0 mm ² . Many candidates wrote the latter as 11×10^{-3} m ² . Other lower ability candidates tried calculating the area from this value. Some candidates correctly determined the stress, then the strain and then the extension.
	Total	3	
3 8	wavelength = 60 (cm)	C1	Ignore POT
	v = 0.30/2.5 × 10 ^{−3} = 120 (m s ^{−1})	C1	
	f = 120/0.60 = 200 (Hz)	A1	Possible ECF from incorrect value of speed <i>v</i>
	Total	3	
3 9	$E = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{480 \times 10^{-9}} \text{or} E = 4.1(4) \times 10^{-9}$	C1	
	$N = \frac{1.2 \times 10^{-3}}{4.1(4) \times 10^{-19}}$	C1	
	<i>N</i> = 2.9 × 10 ¹⁵ (s ⁻¹)	A1	Examiner's Comments The term 'photon' and the 480 nm wavelength should have prompted most candidates to calculate the energy of a single photon. The most common answer was to divide the 1.2 mW by 480 nm. Once again, it was the top-end candidates who correctly arrived at the answer of 2.9×10^{15} photons per second. About 1 in every five candidates omitted this question.
	Total	3	
4 0	(1 C =) (1) A s	C1	Allow alternative methods
	(1 J =) (1) kg m s ⁻² × m or (1) N = (1) kg m s ⁻²	C1	

		$V = \frac{\text{kg ms}^{-2} \times \text{m}}{\text{As}} = \frac{\text{kgm}^2 \text{s}^{-2}}{\text{As}}$ kg m ² A ⁻¹ s ⁻³	M1 A0 3	Note this mark is for clear substitution and working Examiner's Comments Some candidates were not clear on what was meant by base units. Most realised that the quantity of electric charge is measured in As. Weaker candidates had difficulty deriving work done.
4	i	$(\lambda = \frac{3.00 \times 10^8}{11 \times 10^9})$ $\lambda = 0.027 \text{ (m)}$	B1	Note answer to 3 SF is 0.0273 (m) Possible SF penalty for 0.03 (m)
	ii	Diffraction / spreading of the waves (occur at the narrow slit.) This is because the wavelength is similar / comparable to the width / size / length of the slit (ORA)	M1 A1	Allow 'wavelength is same as the gap (size)' AW
		Total	3	
4 2	i	There is friction. GPE is transferred to KE and heat or thermal (energy).	B1	
	ii	work done = (0.50 – 0.36) (J) or work done = 0.14 (J)	C1	
	ii	$F \times 0.90 = 0.14$, therefore resistive force = 0.16 (N)	A1	
		Total	3	
43		(µ = mass / length) Use (digital) balance / scales for mass Use ruler / measuring tape for the length Any one from:	B1	Not 'weight', but allow 'weigh using scales to get mass' Allow for $\mu = T / v^2$ route: <i>T</i> is measured using a newtonmeter or determine <i>T</i> using <i>mg</i> by measuring (hanging) mass <i>m</i> using a balance / scales Allow for $\mu = T / v^2$ route: Determine <i>v</i> by measuring length using a ruler / tape measure (and also either stopwatch or stroboscope) Allow any other sensible suggestion Ignore incorrect use of the terms accuracy and precision Not 'repeat measurements' for 3 Allow 'determine gradient of mass against length graph' or 'determine gradient of <i>T</i> - <i>v</i> ² graph' for 3
		Measure mass to the nearest gram / 1. 0.1 g / 0.01 g / 0.001 g / 'high resolution' 2. Measure length to (the nearest) mm	B1	

		 Repeat for different length / mass (and 3. determine average value for the mass per unit length) 4. Use a longer length of wire (reduce the percentage uncertainty) Ensure there is no zero-error for the 5. balance / scales or use calibrated balance / scales (AW) 		Examiner's Comments About half the candidates scored two or more marks for this practical based question. It is good to report that many candidates were familiar with the idea of measuring mass using a balance and using a ruler to measure length. A good number of candidates mentioned plotting a graph of mass against length of wire and determining the gradient or μ . In this instance examiners ignored the incorrect use of the terms <i>precise</i> and <i>accurate</i> . A significant number of candidates spoilt their answers by referring to <i>weight</i> being measured by a balance. Alternative approaches describing the analysis of measured values of tension <i>T</i> and speed <i>v</i> were allowed if the physics was correct.
		Total	3	
4 4	i	Microwave: 2 cm X-ray 200 pm	B1 B1	
	ïi	Any two from: May be reflected / refracted / diffracted / interference May be polarised Travel in a vacuum (at a constant speed / 3 x 108 m s-1) Oscillation of electric and magnetic fields.	B1 × 2	Allow speed of light
		Total	4	
4 5	i	(<i>P</i> = <i>VI</i> = 10.0 × 0.030) power = 0.30 (W)	B1	Allow 0.3 (W) without any SF penalty Allow 300 <u>m</u> (W)
	ïi	The component is (an NTC) thermistor. (As <i>V</i> or <i>I</i> increases the) resistance of the component decreases Any <u>one</u> from: Component cannot be a diode / LED because of current in one direction only (AW) (As <i>V</i> or <i>I</i> increases the) component gets warmer / increase in number density (of free charge carriers)	B1 B1 B1	Allow calculations at 5 V and 10 V to support this, ignore POT errors Examiner's Comments The question was effective in two parts. Use the data to determine the resistance of the component at different potential difference, and then use this data to make judgement in identifying the component. Most candidates gained two or more marks. Some descriptions went astray with mention of Ohm's law or <i>I-V</i> characteristics. A significant number of candidates gave good reasoning but spoilt their answers by opting for a diode, an LDR or a filament lamp.

					Exemplar 10 (ii) Analyse the data in the table and hence identify the component. A fitoment tomp A file: A fitoment tomp A file: A fitoment tomp A file: OF COLSPANE: OF COLSPANE: OF COLSPANE: A fitoment tomp A file: OF COLSPANE: OF COLSPANE: OF COLSPANE: OF COLSPANE: A fitoment tomp A file: OF COLSPANE: OF CO
			Total	4	
4 6			$\lambda = \frac{\ln 2}{6600} = 1.050 \times 10^{-4} (\mathrm{s}^{-1})$	C1	Correct use of $A = \lambda N$
			$N = \frac{400 \times 10^6}{1.050 \times 10^{-4}} = 3.809 \times 10^{12}$	C1	
			mass of FDG = $\frac{3.809 \times 10^{12}}{6.02 \times 10^{23}} \times 0.018 \div 0.099$	C1	
			mass of FDG = 1.15×10^{-12} (kg) or 1.2×10^{-12} (kg)	A1	
			Total	4	
-					
4 7			speed = $2 \times 1.5 \times 10^{-2}/19 \times 10^{-6}$ (= 1579 m s ⁻¹)	C1	
4 7			speed = 2 × 1.5 × 10 ⁻² /19 × 10 ⁻⁶ (= 1579 m s ⁻¹) $Z = \rho c = 1070 \times 1579$	C1 C1	
4 7			speed = 2 × 1.5 × 10 ⁻² /19 × 10 ⁻⁶ (= 1579 m s ⁻¹) $Z = \rho c = 1070 \times 1579$ $Z = 1.7 \times 10^{6}$	C1 C1 A1	Allow 2 marks for 8.4 × 10 ⁵ ; factor of 2 omitted
4 7			speed = $2 \times 1.5 \times 10^{-2}/19 \times 10^{-6}$ (= 1579 m s ⁻¹) $Z = \rho c = 1070 \times 1579$ $Z = 1.7 \times 10^{6}$ unit: kg m ⁻² s ⁻¹	C1 C1 A1 B1	Allow 2 marks for 8.4 × 10 ⁵ ; factor of 2 omitted
4 7			speed = $2 \times 1.5 \times 10^{-2}/19 \times 10^{-6}$ (= 1579 m s ⁻¹) $Z = \rho c = 1070 \times 1579$ $Z = 1.7 \times 10^{6}$ unit: kg m ⁻² s ⁻¹ Total	C1 C1 A1 B1 4	Allow 2 marks for 8.4 × 10 ⁵ ; factor of 2 omitted
4 7			speed = $2 \times 1.5 \times 10^{-2}/19 \times 10^{-6}$ (= 1579 m s ⁻¹) $Z = \rho c = 1070 \times 1579$ $Z = 1.7 \times 10^{6}$ unit: kg m ⁻² s ⁻¹ Total	C1 C1 A1 B1 4	Allow 2 marks for 8.4 × 10 ⁵ ; factor of 2 omitted Examiner's Comments
4 7 4 8	a	i	speed = $2 \times 1.5 \times 10^{-2}/19 \times 10^{-6}$ (= 1579 m s ⁻¹) $Z = \rho c = 1070 \times 1579$ $Z = 1.7 \times 10^{6}$ unit: kg m ⁻² s ⁻¹ Total 40 (mV)	C1 C1 A1 B1 4 B1	Allow 2 marks for 8.4 × 10 ⁵ ; factor of 2 omitted Examiner's Comments This was well answered. A few candidates gave an answer of 80 mV.
4 7 4 8	a	i	speed = $2 \times 1.5 \times 10^{-2}/19 \times 10^{-6}$ (= 1579 m s ⁻¹) $Z = \rho c = 1070 \times 1579$ $Z = 1.7 \times 10^{6}$ unit: kg m ⁻² s ⁻¹ Total 40 (mV) $(T =) 3 \times 0.5 = 1.5$ (ms)	C1 C1 A1 B1 4 B1 C1	Allow 2 marks for 8.4 × 10 ⁵ ; factor of 2 omitted Examiner's Comments This was well answered. A few candidates gave an answer of 80 mV.
4 7 4 8	a	i	speed = $2 \times 1.5 \times 10^{-2}/19 \times 10^{-6}$ (= 1579 m s ⁻¹) $Z = \rho c = 1070 \times 1579$ $Z = 1.7 \times 10^{6}$ unit: kg m ⁻² s ⁻¹ Total 40 (mV) $(T =) 3 \times 0.5 = 1.5 \text{ (ms)}$	C1 C1 A1 B1 4 B1 C1	Allow 2 marks for 8.4 × 10 ⁵ ; factor of 2 omitted Examiner's Comments This was well answered. A few candidates gave an answer of 80 mV. Note: Answer to 3 SF is 667 (Hz) Note: 0.67 or 0.667 scores 1 mark
4 7 4 8	a	i	speed = $2 \times 1.5 \times 10^{-2}/19 \times 10^{-6}$ (= 1579 m s ⁻¹) $Z = \rho c = 1070 \times 1579$ $Z = 1.7 \times 10^{6}$ unit: kg m ⁻² s ⁻¹ Total 40 (mV) $(T = 3 \times 0.5 = 1.5 \text{ (ms)})$	C1 C1 A1 B1 4 B1 C1	Allow 2 marks for 8.4 × 10 ⁵ ; factor of 2 omitted Allow 2 marks for 8.4 × 10 ⁵ ; factor of 2 omitted Examiner's Comments This was well answered. A few candidates gave an answer of 80 mV. Note: Answer to 3 SF is 667 (Hz) Note: 0.67 or 0.667 scores 1 mark Examiner's Comments
4 7 4 8	a	i	speed = $2 \times 1.5 \times 10^{-2}/19 \times 10^{-6}$ (= 1579 m s ⁻¹) $Z = \rho c = 1070 \times 1579$ $Z = 1.7 \times 10^{6}$ unit: kg m ⁻² s ⁻¹ Total 40 (mV) $(T =) 3 \times 0.5 = 1.5 \text{ (ms)}$ f = 670 (Hz)	C1 C1 B1 4 B1 C1 A1	Allow 2 marks for 8.4 × 10 ⁵ ; factor of 2 omitted Allow 2 marks for 8.4 × 10 ⁵ ; factor of 2 omitted Examiner's Comments This was well answered. A few candidates gave an answer of 80 mV. Note: Answer to 3 SF is 667 (Hz) Note: 0.67 or 0.667 scores 1 mark Examiner's Comments This was also well answered although some candidates did not allow for the milliseconds.

					0.50 or 0.5 (m) here
		ii i	λ = 0.49 (m)	B1	Examiner's Comments Most candidates correctly rearranged the formula and used their answer to (ii). Some candidates truncated their answer to one significant figure which was not penalised this year.
	b		Amplitude / height (of trace / signal) is smaller	B1	
			$I \propto A^2$ and amplitude (of sound or signal) is halved / amplitude is 2 div / amplitude is 20 (mV)	B1	Note this will also score the first B1 mark Examiner's Comments Most candidates understood that the new amplitude would be less than the original. Many thought it would be 1 / 16th of the original. The second mark was only gained by stronger candidates who explained why it would be 20 mV.
			Total	6	
4 9			5.0 eV = 8.0 × 10 ⁻¹⁹ (J) and 2.0 eV = 3.2 × 10 ⁻¹⁹ (J)	B1	Allow correct answers in terms of threshold frequency / wavelength for the metals and the frequency / wavelength of the photon
			$\frac{\text{photon energy =}}{\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{300 \times 10^{-9}}} = 6.6(3) \times 10^{-19} \text{(J)}$	B1	Allow first two B1 marks for photon energy quoted as 6.6 × 10 ⁻¹⁹ J and 4.1 eV
			energy of photon > work function of X Or energy of photon < work function of Y	B1	
			Hence electrons emitted from X with speed / KE from zero to a maximum value and no electrons are emitted from Y	B1	
			Total	4	
					intensity = 772 (W m ⁻²)
					power = 0.262 (W)
			(intensity $I = I_0 e^{-\mu x}$) = 4.6 × 10 ³ × $e^{-0.85 \times 2.1}$		energy per unit area = 23160 J m ⁻²
			Either: (power =) $4.6 \times 10^3 \times e^{-0.85 \times 2.1} \times 3.4 \times 10^{-4}$	C1	energy at surface = 47 (J) 2 marks
5 0			Or (energy per unit area =) $4.6 \times 10^3 \times e^{-0.85 \times 2.1} \times 30$	C1 C1	Examiner's Comments There were many routes to a final answer in this question. Those candidates who set out their working corefully used letters to
			energy = 4.6 × 10 ³ × e ^{-0.85 × 2.1} × 3.4 × 10 ⁻⁴ × 30	A1	represent the calculated quantity, and set this out in several stages tended to be the most successful. Some calculated the
			energy = 7.9 (J)		energy at the surface before going on to apply the attenuation formula, and others carried out the attenuation on the intensity. Each method can be credited at various stages, but it is important that a clear structure is shown. Many candidates attempted to
					change cm ⁻¹ to m ⁻¹ by dividing by 100, whereas the better candidates appreciated that the units of distance and attenuation

				constant would cancel in the exponent. Several candidates used the incorrect formula energy = power / time which can be a common misconception. The correct formula is in the data booklet if required.
		Total	4	
5 1		$(CR =) 2000 \times 10^{-6} \times 120 \times 10^{3}$ $1.00 = 1.48 \times [1 - e^{-t/240}] \text{ or } 0.48 = 1.48e^{-t/240}$ $(t =) - 240 \times \ln(0.48/1.48)$ t = 270 (s)	C1 C1 A1	<i>CR</i> = 240 (s) Special case: 94 (s) for use of discharging equation. Max 2 marks Examiner's Comments This question comes from the learning outcome 6.1.3(c) in the use of an equation in a capacitor-resistor circuit. Candidates are required to determine the time at which a potential difference is met, which involves the use of logarithms. It was noted that many candidates were confident in their use of logarithms and were able to make some progress through their solution. Most candidates calculated the time constant correctly, taking into account the unit prefixes, and substituted this into an equation. However a large proportion used the discharging (rather than the charging) equation to calculate the time and some credit could be allowed for this. Less than one fifth of candidates scored all marks on this question. Misconception Many candidates seemed uncertain which equation to use, applying the simpler discharging equation. While the charging and discharging equations are given in the data booklet, it is not stated which is which, so candidates must make sure they know which to apply.
		Total	4	
52	i	$(v = f\lambda)$ 340 = 20 × 10 ³ × λ wavelength = 1.7 × 10 ⁻² (m)	C1 A1	Allow 1 mark for 17 (m); 20 Hz used <u>Examiner's Comments</u> This question should be a relatively simple introduction to the section, using a familiar formula to calculate a wavelength. Nearly all candidates were able to correctly make wavelength the subject of the equation, and the majority were able to select the correct frequency to use. Those that chose the other frequency could score 1 mark if correctly followed through.
	ii	Loudspeaker and signal generator Frequency increased until limit of hearing frequency determined using $f = 1/T$	B1 B1 B1	Allow this mark for a labelled diagram Do not allow t for time period <u>Examiner's Comments</u>

				This question was poorly answered in general; very few candidates appreciated the need to use a signal generator to produce varying frequencies and seemed to think that the oscilloscope would do this. Many candidates used diagrams (yet not always labelled) to show their apparatus. Although many did appreciate that the upper limit is reached when the hearing stops, few also then went on to say how the frequency could actually be determined.
		Total	5	
53	i	(surface area =) $4\pi \times (1.4 \times 10^9)^2$ or $2.46 \times 10^{19} (m^2)$ (intensity = $\frac{P}{4\pi r^2}$) intensity = $\frac{2.7 \times 10^{27}}{4\pi \times (1.4 \times 10^9)^2}$ intensity = $1.1 \times 10^8 (W m^{-2})$	C1 C1 A0	Allow 2.5 × 10 ¹⁹ (m ²) Note: Using π × (1.4 × 10 ⁹) ² is wrong physics; hence no marks in this show question Examiner's Comments This was a demanding question designed for middle and top-end candidates. The radiant intensity is equal to the power transmitted per unit cross–sectional area. The area being that of a sphere of radius 1.4 × 10 ⁹ m. The equation $4\pi R^2$ was appropriate here. The common errors, mainly from the low–scoring candidates, were using πR^2 and $\frac{4}{3}\pi R^3$. All the key steps in the calculations had to be structured well for
	ï	$E = \frac{3.00 \times 10^8 \times 6.63 \times 10^{-34}}{5.0 \times 10^{-7}}$ E = 4.0 × 10 ⁻¹⁹ (J)	C1 A1	Note: Answer to 3 SF is 3.98×10^{-19} (J) Allow 4×10^{-19} (J) without any SF penalty Examiner's Comments Most candidates were familiar with the equation for the energy of the photon. Answers were generally well–structured and calculations were undertaken without much error in either rearranging the equation or powers of ten. The answer to two significant figures was 4.0×10^{-19} J, as in the general rule with such answers, 4×10^{-19} J was acceptable without any significant figure penalty.
	ii	(number per second = $\frac{2.7 \times 10^{27}}{4.0 \times 10^{-19}}$) number per second = 6.8×10^{45} (s ⁻¹)	B1	Possible ECF from (b)(ii) <u>Examiner's Comments</u> This was a successful end for the top–end candidates, who correctly divided the total output power of Procyon of 2.7 × 10 ²⁷ W by the energy of each photon from (b)(ii). The two common errors were dividing the intensity by the photon energy and changing the photon energy from joule (J) to electron–volt (eV).
		Total	5	

г

5 4	i	$\Delta \lambda = \frac{\lambda v}{c} = \frac{486 \times 10^{-9} \times 960 \times 10^3}{3.00 \times 10^8}$	C1	
	i	Δλ = 1.56 (nm)	C1	
	i	λ = 486 + 1.56 = 488 (nm)	A1	
		<i>d</i> = 1.25 × 10 ^{−6} m		
	ii	$\theta = \sin^{-1} \left(\frac{2 \times 486 \times 10^{-9}}{1.25 \times 10^{-6}} \right)$	C1	
	ii	θ = 51°	A1	$\theta = \sin^{-1} \left(\frac{2 \times 488 \times 10^{-9}}{1.25 \times 10^{-6}} \right) = 51^{\circ};$ incorrect 488 nm used instead of 486 nm.
		Total	5	
5	i	$(g \rightarrow)$ [m s ⁻²] and $(t \rightarrow)$ [s] or $(gt^2 \rightarrow)$ [m s ⁻² × s ²]	M1	
5		Clear evidence of working leading to m on both sides	A1	
		<i>s</i> / distance measured with a ruler / tape measure		
		Timer mentioned for measuring t / time	B1	
	ii	Measure distance from bottom of ball to (top of) trapdoor	B1	
		Any <u>one</u> from:	B1	
		 Take repeated readings (for <i>t</i> for same <i>s</i>) to determine average <i>t</i> Avoid parallax error when using the ruler 	B1	
		Total	6	
				$E = 5.0 \times 10^4 (V m^{-1})$
				$F = 8.0 \times 10^{-15} (N)$
		$(E =) \frac{4000}{0.080}$	C1	Allow this mark if the working is shown. If only value is given, then the answer must be 3SF or more
5	i	$(F =)\frac{4000}{0.080} \times 1.6 \times 10^{-19}$	C1	Examiner's Comments
		$(a =) \frac{0.0410}{9.11 \times 10^{-31}}$ or 8.78×10^{15}	C1	This question asks for a calculation to show the value of the
		<i>a</i> = 8.8 × 10 ¹⁵	A0	vertical acceleration in an electric field. The magnitude of the electric field strength first needs to be calculated, followed by the acceleration from Newton's second law. Candidates are reminded that a show question needs to be answered in detail and that each stage should be clear. Roughly equal numbers of candidates scored full marks or zero on this question.

		$(t=)\frac{0.12}{6.0\times 10^7}$	M1	Examiner's Comments
	ii	$(t = 2.0 \times 10^{-9} \text{ s})$	A0	As with the previous question, there is the need to make sure that the calculation leading to the given answer is clearly set out.
	II i	$(x =) \frac{1}{2} \times 8.78 \times 10^{15} \times (2.0 \times 10^{-9})^2$ $x = 1.8 \times 10^{-2} \text{ (m)}$	C1 A1	Allow a = 8.8 × 10 ¹⁵ Examiner's Comments Most candidates appreciated the need to use an equation of motion in their solution, but a significant number of candidates used an initial horizontal velocity in the expression, leading to an incorrect answer. There were also an unusually large number who gave no response. Candidates should appreciate that if they have been given show questions, then it is likely that these values will be used in alter questions. Misconception Many candidates included an initial vertical velocity – it may be helpful to think of this process as analogous to that of projectile motion.
		Total	6	
57		Level 3 (5–6 marks) Clear description and clear calculations of energy per kg There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Clear description OR Clear calculations of energy per kg OR Some description and some calculations There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1–2 marks) Limited description OR Limited calculations There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.	B1×6	Indicative scientific points may include: Description Energy is produced in both reactions More energy produced (per reaction) in fission The (total) binding energy of 'products' is greater In fusion, nuclei repel (each other) Fusion requires high temperatures / high KE Fission reactions are triggered by (slow-)neutrons Chain reaction possible in fission Calculations 1 kg of uranium has 4.26 mols / 2.56 × 10 ²⁴ nuclei 1 kg of deuterium has 500 mol / 3.01 × 10 ²⁶ nuclei / 1.50 × 10 ²⁶ 'reactions' 200 MeV = 3.2 × 10 ⁻¹¹ J 4 MeV = 6.4 × 10 ⁻¹³ J Uranium: ~ 10 ¹⁴ (J kg ⁻¹) (actual value 8.2 × 10 ¹³) Deuterium: ~ 10 ¹⁴ (J kg ⁻¹) (actual value 9.6 × 10 ¹³) The energy per kg is roughly the same Examiner's Comments This is the second LoR question. This is designed to assess knowledge of the two nuclear energy reactions and to calculate energy release using some given data. The differences between

			0 marks No response or no response worthy of credit		the fission and fusion reactions were generally well answered although many candidates explained differences in design, operation and waste more than the reactions. The similarities were often not as clear however several candidates gave excellent responses in terms of binding energies and mass differences. Candidates were also expected to complete a calculation to show which produces more energy output per kilogram. This is challenging calculation to follow through fully, but most candidates were able to make some attempt, even if it was only converting MeV to J. Only better candidates realised 2 nuclei of deuterium were used for one fusion reaction. While a small number of candidates did correctly calculate the energy per kilogram, they tended to state that fusion produced more energy rather than a feeling that they are basically equivalent. As usual with LoR questions, a holistic approach is taken to the marking and candidates can access higher levels without necessarily reaching all the marking points. Even so, relatively few candidates were able to access Level 3, generally due to poor calculations and/or descriptions.
			Total	6	
5 8		i	$\underline{A} = 470/8.8 \times 10^{-13} = 5.3 \times 10^{14} \text{ (Bq)}$ $\lambda = \ln 2/(88 \times 3.16 \times 10^7) (= 2.5 \times 10^{-10} \text{ s}^{-1})$ $(A = \lambda N); N (= 5.3 \times 10^{14} / 2.5 \times 10^{-10}) = 2.1$ $\times 10^{24}$	C1 C1 A1	Mark is for correct calculation of A (in Bq or decays per s) Mark is for correct working to give λ in s ⁻¹
			$P = P_o \exp(-\lambda t)$	C1	
		ii	<i>P</i> = 470 exp (− ln 2 x 100 / 88)	C1	Allow formula in terms of <i>N</i> or <i>A</i>
			<i>P</i> = 210 (W)	A1	Allow calculation in terms of N or A ; allow ECF for N or A
			Total	6	
5 9	a		(initial charge) $Q = EC_0$ or (Q conserved so final) $Q = V(C + C_0)$ (as capacitors are in parallel) <u>so</u> $EC_0 = V(C + C_0)$ (and hence $V = C_0 E / (C + C_0)$)	M1 A1	At least one correct expression for Q for first mark The two correct expressions equated for the second mark Examiner's Comments Some candidates obtained $Q = EC_0$ by applying the definition of capacitance at A, but then did not realise that charge would be conserved on switching from A to B. Some chose the wrong formula for capacitors in parallel or attempted to use the potential divider equation.
	b	i	$1/V = 1/E + C/EC_0$ (and compare to $y = c + mx$)	B1	Mark is for rearrangement into linear equation <u>Examiner's Comments</u> Some candidates correctly took the reciprocal of both sides of the

					given equation but were then unable to show a rearrangement into the standard linear form. A common difficulty was an inability $\begin{pmatrix} 1 & (C + C_0) & C & C_0 \end{pmatrix}$
					to expand the bracket in $\overline{E} \times \frac{\overline{C_0}}{C_0}$ to give $\overline{EC_0} + \frac{\overline{C_0}}{EC_0}$
					C₀ = 2.1547 × 10 ⁻³ F
					Answer must be correct, rounded correctly and given in mF
		ij	1/ <i>EC</i> ₀ = 51 = 1/(9.1 <i>C</i> ₀) giving <i>C</i> ₀ = 1/(51 × 9.1) F	B1	Candidate's answer must be given to 2 SF
		"	C ₀ = 2.2 (mF)	B1	Examiner's Comments
					Some candidates gave their response to 2 d.p. instead of to 2 s.f.
					as required.
					Top and bottom points chosen must be from opposite extremes of uncertainty limits, accurate to within half a small square
					$\Delta x \ge 1.5 \times 10^{-3}$; expect 59±1 or 44±1 (or 0.059 or 0.044); allow ECF from poorly drawn line; readings must be accurate to within half a small square
			(at least) one correct worst fit line drawn		ECF from b(ii) ; expect uncertainty of up to 0.4(mF)
			gradient calculated correctly using a large triangle ii uncertainty = $C_0 - 1/(wfl \text{ gradient x 9.1})$	B1	ECF from b(ii) If no value for C_0 given in b(ii), allow any answer given to 1dp
				B1	Examiner's Comments
		i		B1 B1	Most candidates gained the mark for using a large triangle (spanning more than 1.5 on the x-axis) to determine the gradient of the worst-fit line. Lower ability candidates were unable to gain credit for finding the gradient of their line because they read the scales on the axes incorrectly. Candidates should take a ruler into the examination and be careful about the positioning of the ruler for drawing a worst-fit straight line. A worst-fit line should ion opposite extremes of uncertainty limits and pass between all
					the uncertainty limits. The Practical Skills Handbook is helpful on this topic.
					Several candidates performed the unnecessary step of calculating the fractional (or percentage) uncertainty instead of using $\Delta C_0 = \pm C_{0 \text{ best}} - C_{0 \text{ worst}} $ directly.
	с		Only effect is to slow the charging and / or discharging (of capacitor(s)) <u>and so</u> the final charges are unchanged / the values for <i>V</i> are unchanged / the graph is unchanged / the gradient is unchanged / there is no effect on the experiment (results)	B1	Allow and so the experiment takes longer
			Total	10	
6 0		i	tension = 850 kg × 9.81 = 8300 N	B1	

2.1 SI Units

	ji	work done = $mah = 850 \times 0.81 \times 12$	C1	
		work done = $mgn = 000 \times 3.01 \times 12$		
	11	work done = 100 kJ	C1	
	ii	output power = 100 × 10 ³ / 40 (=2501 W)	C1	
	ii	input power (= 2501 / 0.6) = 4200 (W)	A1	
	ii i	Suggestion to reduce heat losses through friction in moving parts e.g. oil, bearings	B1	
	ii i	Use a stiffer / stronger cable to reduce energy loss through stretching	B1	
		Total	7	
6 1	i	Velocity determined by Doppler shift of spectral lines	B1	
	ii	Suitable straight line of best fit though origin	M1	
	ii	Appropriate pair of values (d, v) taken from line, $H_0 = v/d$	M1	
	ii	400 km s ⁻¹ Mpc ⁻¹ $\leq H_0 \leq$ 600 km s ⁻¹ Mpc ⁻¹	A1	
	ii i	$H_0 = 500 \times 10^3 / 10^6 \times 3.1 \times 10^{16} = 1.6 \times 10^{-17} \text{ s}^{-1}$	C1	
	ii i	$t = 1 / H_0 = 1 / 1.6 \times 10^{-17} = 6.2 \times 10^{16} \text{ s}$	C1	
	ii i	age = 2.0 × 10 ⁹ (years)	A1	Accept answers between 1.6×10^9 (years) and 2.5×10^9 (years) CF
		Total	7	
				Not blue light has frequency > threshold frequency Or red light has frequency < threshold frequency
62	i	energy of blue light / photon of blue light > 2.3 eV / work function or energy of red light / photon of red light < 2.3 eV / work function Energy of photon is independent of intensity (energy of photon given by equation) $E =$ $hf / E = hc/\lambda$ One photon interacts with one electron	B1 B1 B1	Allow intensity linked to <u>rate</u> of photons / <u>rate</u> of electrons emitted per second Allow <i>E</i> proportional f / E proportional to $1/\lambda$ <u>Examiner's Comments</u> The question is clear that the response needs to be given in terms of photons and energies. Many candidates discussed threshold frequencies, and although often correct, does not answer the question. The link between photon energy and frequency needs to be clear and not just a simple dependency – the simple solution for this is to state the equation. The final marking point requires the candidate to appreciate that only one photon can be absorbed by one electron. Standalone statements such as "there is a 1:1 relation" is meaningless in this context unless qualified. Many good candidates were able to score at

					answer and candidates are always to be reminded of the need for conciseness in such a response.
					? Misconception
					Some candidates missed opportunities for marks by describing the effect wholly in terms of frequency, rather than energy.
					ϕ = 3.68 × 10-19 (J); E = 6.2156 × 10-19 (J) KE _{max} = 2.5356 × 10 ⁻¹⁹ (J)
			$(\phi =) 2.3 \times 1.6 \times 10^{-19} \text{ or}$ $(E =) \frac{\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{320 \times 10^{-9}}}{(KE_{\text{max}} =) \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{320 \times 10^{-9}} - 2.3 \times 1.6 \times 10^{-19}$	C1	$v = 7.46 \times 10^5 \text{ (m s}^{-1}\text{)}$ <u>Examiner's Comments</u> This is a novel development on what is a common calculation of
		ï	$(v=) \sqrt{\frac{2 \times 2.5356 \times 10^{-19}}{9.11 \times 10^{-31}}}$ $(vouclength =) \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 7.46 \times 10^{5}}$	C1 C1 A1	candidates. Many were able to score the first marking point, either by converting from eV to joules, or by the calculation of the photon energy. Few candidates scored 2 or 3 marks, as generally an error such as using the speed of light for the electrons
			(wavelength =) 9.11×10^{-10} (m)		occurred. However, a good number of stronger candidates were able to achieve all 4 marks and set out their solutions clearly. It should be noted that the first 3 marks are for setting up the calculations and not the evaluations. This is to not penalise candidates too early for calculational errors and as always highlights the clear need for setting out working as well as possible
			Total	8	
6 3	а	i	(Vernier) Calliper or micrometer (screw gauge)	B1	Not rule(r) <u>Examiner's Comments</u> This question was well answered with most candidates stating either Vernier calliper or a micrometer screw gauge.
		ï	2.52 ± 0.08	B1 B1	Allow (2.52-2.43 =) 0.09 or (2.59-2.52 =) 0.07 <u>Examiner's Comments</u> Most candidates correctly calculated the mean diameter of the ball. A much smaller proportion of the candidates determined the absolute uncertainty in the diameter correctly. In this case, the range was 0.16 cm, so the absolute uncertainty was 0.08 cm.

			AfL
			When measurements are repeated the absolute uncertainty is given by: Absolute uncertainty = $\frac{1}{2}$ x range = $\frac{1}{2}$ x (maximum value – minimum value)
	Volume $\frac{4}{3} \times \pi \times (1.26 \times 10^{-2})^3$ = 8.379 × 10 ⁻⁶ 8.4×10 ⁻⁶ m ²	M1 A0	$\frac{1}{6} \times \pi \times (2.52 \times 10^{-2})^3 \qquad \text{or}$ $\frac{4}{3} \times \pi \times \left(\frac{2.52 \times 10^{-2}}{2}\right)^3$ Examiner's Comments This was another "show" question. Many candidates find dealing with standard form terms in their calculator difficult. Candidates needed to show clearly the conversion of the diameter in cm to radius in m. There was some evidence of candidate just adding a 10 ⁻⁶ power to their answer.
	<pre>0.023 or 2738 2700 (kg m⁻³) or 2.7 x 103 (kg m⁻³)</pre>	C1 A1	Note 2745 if using calculator value from (iii) Note must be two significant figures Allow one mark for 2.7 x 106 (kg m ⁻³) <u>Examiner's Comments</u> In this question, most candidates were able to determine the density correctly although, a few candidates did not change the mass in gram to kilogram. A large number of candidates did not give their answer to an appropriate number of significant figures; the common answer being 2738 kg m ⁻³ . In this case, the mass was given to two significant figures and the volume was calculated from data give to three significant figures, thus the final answer should be given to the same number of significant figures.
	$\frac{1}{23} \text{ or } \frac{0.08}{2.52} \text{ or } \frac{0.24}{2.52} \text{ or } 4.3\% \text{ or } 3.2\% \text{ or } 9.5\%$	C1 A1	Allow ECF from (ii) – 3.6% or 10.7% for $\Delta d = 0.09$ Allow maximum/minimum methods Note 13% for $\Delta d = 0.07$ or 15% for $\Delta d = 0.09$ [ECF 5.5% for $\Delta d = 0.01$] Examiner's Comments The majority of candidates were able to determine the percentage uncertainty in the mass correctly. Fewer candidates realised that the percentage uncertainty in the volume was three times the percentage uncertainty in the diameter. Candidates who did well,

			clearly showed their working. Some candidates tried to use a maximum/minimum method. This was a more complex method and more difficult for candidates to gain the correct answer. In this case, the maximum mass needed to be divided by the minimum volume or the minimum mass needed to be divided by the maximum volume AfL How to use percentage uncertainties. Exemplar 5 (*) Determine the percentage uncertainties. The candidate's answer is logically structured showing the percentage uncertainty in the mass and volume and then adding them together so gaining both marks.
			An answer of 14% would have been acceptable.
b	Extension = 0.096 – 0.078 or 0.018 m Weight = 0.023 x 9.81 or 0.22563 13 (N m ⁻¹)	C1 C1 A1	Allow ECF for incorrect mass conversion from (iv) Allow 12.6 (N m ⁻¹) or 12.5 (N m ⁻¹) Examiner's Comments The majority of the candidates clearly showed their working and calculated the force constant correctly. Some incorrectly used the energy stored equation.
c i	Apparent weight = 0.01 x 13 (= 0.13 N) (Upthrust = 0.226 - 0.13) = 0.10 (N)	C1 A1	Allow ECF from (b) Allow 0.008 x 12.5 Allow 0.1 (N) (1sf) Examiner's Comments In this question, many candidates calculated the apparent weight and then incorrectly assumed that this was the upthrust. Other errors included using the incorrect values for length to determine the extension. Some candidates correctly determined the upthrust by determining the change in extension.
	$\rho = \frac{0.10}{9.81 \times 8.4 \times 10^{-6}}$ 1200 (kg m ⁻³)	C1 A1	Allow ECF from (i) Examiner's Comments

				Candidates generally found this last question challenging. Some candidates who did less well, attempted to use the equation for liquid pressure. Candidates who did well again clearly showed their reasoning.
		Total	15	
6 4	i	a = F / m / a = 8700 / 2300	C1	
	i	a = 3.8	A1	Note answer is 3.78 to 3 s.f.
	ii	$D_{\text{thinking}} = u \times t = 22 \times 0.97 = 21.3 \text{ (m)}$	C1	Allow 21.34
	ii	$D_{\text{braking}} = u^2 / 2a$ or $22^2 / (2 \times 3.8) = 64.0$ (m)	C1	Allow 63.98
	ii	stopping distance = D_{thinking} + D_{braking} or 21.3 + 64.0	C1	Allow ecf
	ii	stopping distance = 85.3 (m)	A0	Allow 85.32
	ii i	22 × 3600 / 1600 (= 49.5 mph)	B1	
	i v	Thinking distance for truck longer than in chart	B1	
	i v	Suggested reason e.g. tired	B1	Allow any relevant factor
	i v	Braking distance for truck longer than in chart	B1	
	i v	Suggested reason e.g. truck more massive than a car, truck's brakes are poor quality	B1	Ignore reference to road conditions
		Total	10	
				Note v must be the subject
6 5	i	$\frac{61000}{3600} = 16.944$ 17 ms ⁻¹	M1 A0	Examiner's Comments This question was the first 'show' question of the paper. It is important that candidates show clearly their working. In this case it was expected to see 61 multiplied by 1000 and divided by 3600. Most candidates came up with an answer of 16.9.
			C1	Allow use of 16.9 gives 2.7×10^7 (J)
		$\frac{1}{2} \times 1.9 \times 10^5 \times 17^2$	A1	
	ii	2.7(5) × 10 ⁷ (J)	C1	Allow $v^2 = u^2 + 2as$ with values stated correctly
			C1	Ignore negative sign
			A1	Allow use of 16.9 gives 0.46

г

	$0 = 17^{2} + 2a \times 310 \qquad \text{OR } t = \frac{310}{8.5} = 3$ 2 $a = (-)\frac{17^{2}}{2\times 310} = (-)\frac{289}{620} \qquad \text{OR } a = \frac{17}{36.5}$ 0.47 (m s ⁻²)	C1	Not 0.5 Allow ECF from (b) (ii) 1 and (b) (ii) 2 Allow $\frac{2.7 \times 10^7}{310}$ Allow $1.9 \times 10^5 \times 0.46$ Allow $\frac{1.9 \times 10^5 \times 17}{36.5}$ Allow alternatives 87100, 87400, 88000
	3 1.9 × 10 ⁵ × 0.47 3 89000(N)	A1	Examiner's Comments Most candidates were able to correctly write down the equation for kinetic energy and substitute the numbers into it. Where mistakes were made, it was normally with candidates not squaring the speed. It was hoped that candidates would use a speed of 17 m s ⁻¹ from the previous part. Good candidates clearly indicated which equation they were going to use and then clearly showed the substitution of the numbers, with the acceleration as the subject of the formula. Some candidates attempted to determine the time taken for the train to stop. Often when this method was attempted, candidates incorrectly assumed that the speed of 17 m s ⁻¹ was the average speed and not the initial speed. A few candidates round their answer inappropriately to one significant figure. Candidates answered this question in a number of different ways. The majority of the candidates substituted in their answer to the previous part into $F = m a$. Other candidates either used their answer for kinetic energy and the distance travelled or determined the time for the train to stop and used force equals the rate of change of momentum.
ii	Component of train's <u>weight</u> acts against the motion / down the incline / same direction as braking force OR some KE transferred to GPE <u>Smaller distance</u> because larger opposing forces / net force or greater deceleration or less work done by braking force	B1 B1	Not gravity will slow it down Not down, parallel Examiner's Comments Candidates found this question requiring an explanation tough. There were many vague answers referring to "gravity" as opposed to the "force due to gravity" or

			"weight". Candidates should be encouraged to use correct scientific terms. There was also occasional reference to "faster" deceleration. Some candidates correctly answer this question in terms of the kinetic energy being transferred to an increase in gravitational potential energy. Few candidates were precise in discussing the component of the weight parallel to the incline.
	Total	10	